Abstract
A computable groupoid is an algebra ‹N, g› where N is the set of natural numbers and g is a recursive (total) binary operation on N. A set L of natural numbers is a computable list of computable groupoids iff L is recursive, ‹N, ϕe› is a computable groupoid for each e ∈ L, and e ∈ L whenever e codes a primitive recursive description of a binary operation on N.Theorem 1. Let L be any computable list of computable groupoids. The set {e ∈ L: the equational theory of ‹N, ϕe› is finitely axiomatizable} is not recursive.Theorem 2. Let S be any recursive set of positive integers. A computable groupoid GS can be constructed so that S is inifinite iff GS has a finitely axiomatizable equational theory.The problem of deciding which finite algebras have finitely axiomatizable equational theories has remained open since it was first posed by Tarski in the early 1960's. Indeed, it is still not known whether the set of such finite algebras is recursively (or corecursively) enumerable. McKenzie [7] has shown that this question of finite axiomatizability for any (finite) algebra of finite type can be reduced to that for a (finite) groupoid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.