Abstract
We present numerical results for the finite oscillations of a hyperelastic spherical cavity by employing the governing equations for finite amplitude oscillations of hyperelastic spherical shells and simplifying it for a spherical cavity in an infinite medium and then applying a fourth-order Runge-Kutta numerical technique to the resulting non-linear first-order differential equation. The results are plotted for Mooney-Rivlin type materials for free and forced oscillations under Heaviside type step loading. The results for Neo-Hookean materials are also discussed. Dependence of the amplitudes and frequencies of oscillations on different parameters of the problem is also discussed in length.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have