Abstract

We propose a practical method to solve the random-phase approximation (RPA) in the self-consistent Hartree-Fock (HF) and density-functional theory. The method is based on numerical evaluation of the residual interactions utilizing finite amplitude of single-particle wave functions. The method only requires calculations of the single-particle Hamiltonian constructed with independent bra and ket states. Using the present method, the RPA calculation becomes possible with a little extension of a numerical code of the static HF calculation. We demonstrate usefulness and accuracy of the present method performing test calculations for isoscalar responses in deformed 20Ne.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.