Abstract

It has been recently shown, that some Skyrme functionals can lead to non-converging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. We show that the finite-size instabilities not only affect the ground state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. We perform systematic fully-self consistent Random Phase Approximation (RPA) calculations in spherical doubly-magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term $\mathbf{s}\cdot \Delta \mathbf{s}$ . We determine critical values of these coupling constants beyond which the RPA calculations do not converge because RPA the stability matrix becomes non-positive.By comparing the RPA calculations of atomic nuclei with those performed for SNM we establish a correspondence between the critical densities in the infinite system and the critical coupling constants for which the RPA calculations do not converge. We find a quantitative stability criterion to detect finite-size instabilities related to the spin $\mathbf{s}\cdot \Delta \mathbf{s}$ term of a functional. This criterion could be easily implemented into the standard fitting protocols to fix the coupling constants of the Skyrme functional.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call