Abstract
Abstract This paper proposes and partially defends a novel philosophy of arithmetic—finitary upper logicism. According to it, the natural numbers are finite cardinalities—conceived of as properties of properties—and arithmetic is nothing but higher-order modal logic. Finitary upper logicism is furthermore essentially committed to the logicality of finitary plenitude, the principle according to which every finite cardinality could have been instantiated. Among other things, it is proved in the paper that second-order Peano arithmetic is interpretable, on the basis of the finite cardinalities’ conception of the natural numbers, in a weak modal type theory consisting of the modal logic $\mathsf {K}$ , negative free quantified logic, a contingentist-friendly comprehension principle, and finitary plenitude. By replacing finitary plenitude for the axiom of infinity this result constitutes a significant improvement on Russell and Whitehead’s interpretation of second-order Peano arithmetic, itself based on the finite cardinalities’ conception of the natural numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.