Abstract
Understanding how skin microstructure affects slowly adapting type I (SA-I) mechanoreceptors in encoding edge discontinuities is fundamental to understanding our sense of touch. Skin microstructure, in particular papillary ridges, has been thought to contribute to edge and gap sensation. Cauna's 1954 model of touch sensibility describes a functional relationship between papillary ridges and edge sensation. His lever arm model proposes that the papillary ridge (exterior fingerprint line) and underlying intermediate ridge operate as a single unit, with the intermediate ridge acting as a lever which magnifies indentation imposed at the papillary ridge. This paper contests the validity of the lever arm model. While correctly representing the anatomy, this mechanism inaccurately characterizes the function of the papillary ridges. Finite element analysis and assessment of the critical anatomy indicate that papillary ridges have little direct effect on how SA-I receptors respond to the indentation of static edges. Our analysis supports a revised (stiff shell–elastic bending support) interpretation where the epidermis is split into two major layers with a stiff, deformable shell over an elastic bending support. Recent physiological, electrophysiological, and psychophysical findings support our conclusion that the function of the intermediate ridge is distinct from the function of the papillary ridge.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have