Abstract

Boronate affinity functionalized materials have recently drawn increasing attention due to their capability to selectively isolate and enrich glycoproteins and glycopeptides. As cheaper and more stable competitors to lectins, boronic acids are generally believed to yield a relatively wider spectrum specificity to glycoproteins. For better understanding and effective utilization of boronate affinity, it is necessary to establish if boronic acids exhibit lectin-like narrow specificity towards individual or a sub-class of glycoproteins. Here we report a pH manipulation strategy for fine-tuning the specificity of boronate affinity monoliths towards two sub-classes of glycoproteins, sialylated and nonsialylated glycoproteins. When the binding pH > the pK(a) of the boronic acid by one pH unit or more, the boronate affinity monolith preferentially binds to glycoproteins containing neutral sugars and excludes sialic acid containing glycoproteins due to electrostatic repulsion. When the binding pH < the pK(a) by one pH unit or more, the boronate affinity monolith binds to sialylated glycoproteins due to the exceptional binding affinity of the boronic acid towards sialic acid residues. The alternative specificity towards sialic acid and neutral sugar was first verified using an off-line combination of boronate affinity extraction with nano-ESI-Orbitrap MS/MS detection. The alternative specificity towards sialylated and nonsialylated glycoproteins was then demonstrated by means of off-line combination of boronate affinity extraction with MALDI-TOF MS. Finally, the developed approach was applied to the alternative extraction of intact sialylated and nonsialylated glycoproteins spiked in human serum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.