Abstract

Titanium dioxide (TiO2) has been integrated into the surface of mesoporous silica (SMG) synthesized via the hydrothermal approach and a dual template CTAB-Gelatin. XRD, nitrogen adsorption, FTIR, SEM-EDX, and UV–Vis DR spectroscopy were performed to evaluate a 1 wt% TiO2/SMG material. After titania incorporation, the addition of gelatin during the synthesis of SMG increases the pore volume to 0.76 cc/g. The expansion of the silica pores is caused by the development of TiO2 crystal grains on the mesoporous silica-gelatin. An increase in the gelatin-CTAB to mesoporous silica weight ratio modifies the surface area, pore size, and particle size without compromising the meso-structure. In this research, the TiO2/SMG composite demonstrated much greater photodegradability for methylene blue (MB) than the TiO2/mesoporous silica sample without gelatin. The experimental results indicate that the photocatalytic activity of methylene blue from SMG titania/silica samples is reliant on the adsorption ability of the composite and the photocatalytic activity of titania, with optimal activity from samples with the highest surface area and pore volume, which directly increase the Ti: Si ratio and decrease the photodegradability of the composite when the ratio is too high or too low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call