Abstract
Metal-organic cages are potential artificial models for mimicking biological functions due to their capability of selective encapsulation for certain guest molecules. In this work, we designed and synthesized a series of rhombic dodecahedral Ni-imidazolate cages (Ni14L24) with precisely controlled aperture for CO2 encapsulation. The aperture of the cages can be tuned by the strategies of ligand decoration and metal-ion hybridization. Similar to the breathing function of alveoli, CO2 passes through the dynamic aperture into the cages under a pressure of 2.0-3.0 bar in methanol solution, and slowly move out of the cages when the pressure goes down. In the solid state, CO2 is encapsulated and prisoned in the cages under a high pressure of 15.0-30.0 bar or supercritical conditions. By replacing the square-coordinated Ni2+ with Cu2+, the resulting Ni-Cu heteronuclear cage lost the capability of physically encapsulating CO2 even though the aperture's size is only slightly changed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.