Abstract

Constructing single atom catalysts with fine-tuned coordination environments can be a promising strategy to achieve satisfactory catalytic performance. Herein, via a simple calcination temperature-control strategy, CeO2 supported Pt single atom catalysts with precisely controlled coordination environments are successfully fabricated. The joint experimental and theoretical analysis reveals that the Pt single atoms on Pt1/CeO2 prepared at 550 °C (Pt/CeO2-550) are mainly located at the edge sites of CeO2 with a Pt–O coordination number of ca. 5, while those prepared at 800 °C (Pt/CeO2-800) are predominantly located at distorted Ce substitution sites on CeO2 terrace with a Pt–O coordination number of ca. 4. Pt/CeO2-550 and Pt/CeO2-800 with different Pt1-CeO2 coordination environments exhibit a reversal of activity trend in CO oxidation and NH3 oxidation due to their different privileges in reactants activation and H2O desorption, suggesting that the catalytic performance of Pt single atom catalysts in different target reactions can be maximized by optimizing their local coordination structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.