Abstract
The propagation of an x-ray wave field in an elastic field of an edge dislocation crossing a scattering triangle exactly along the bisector of the scattering angle has been considered. The scattering of the x-ray wave field by a complex elastic field of the edge dislocation has been analyzed using the methods of geometrical optics. It has been established that the fine structure of a diffraction image of defects in thick crystals is determined by the differences in scattering of the normal and anomalous modes of the x-ray wave field in the vicinity of the Bragg reflection. In the case of thick crystals, the x-ray diffraction image of defects can have a symmetry different from the symmetry of the function of local misorientations of the crystal lattice. X-ray wave scattering by local distortions of the crystal lattice can occur according to two different mechanisms depending on the gradient of space changes in the deformation field. In the crystal regions where the elastic field varies slowly with a change in the distance, the x-ray wave field has had time to adjust itself to follow the course of deviations of the crystal lattice from the exact Bragg condition. In the crystal region where the elastic field changes significantly at distances of the order of the extinction length, this region leaves the reflecting position and interference scattering occurs at the interface of the region. It is important that the form of the deformation field in this case is of no significance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.