Abstract

The utility of the far-infrared lines of oxygen as diagnostics of gas outflows and for other applications depends on accurate descriptions of the rate coefficients for excitation (and relaxation) through collisions with electrons and with hydrogen atoms. For O and H collisions, earlier calculations of rate coefficients show discrepancies leading to ambiguity in astrophysical applications. In this note we introduce a methodology that yields consistent sets of rate coefficients for a number of cases. We then apply our method to the O–H system in order to investigate the discrepancies. The present rate coefficients will be of particular interest for modeling observations of astrophysical environments in the far-infrared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.