Abstract
In the modeling of the astrophysical plasmas, the relative elemental abundance inferred from solar and stellar upper atmosphere can be affected by as much as a factor of 5 due to the uncertainties in the current dielectronic recombination (DR) rate coefficients used to analyze the spectra [Savin and Laming, Astrophys. J. 566, 1166 (2002)]. DR rate coefficients for oxygenlike ions have been identified as the most urgent needs for the astrophysical applications. In this work, we report on the calculations of DR rate coefficients for Mg V, Si VII, S IX, and Fe XIX ions which are important for the modeling of the astrophysical plasmas. The calculations are carried out in isolated resonance and distorted-wave approximations. The relevant atomic data are calculated using the multiconfigurational Dirac-Fock method. We include 2s-2p, 2p{sub 1/2}-2p{sub 3/2}, 2l-3l{sup '}, and 1s-2p excitations and cover temperatures ranging from 0.001 eV to 10 000 eV. For low temperatures, it is essential to have accurate DR resonance energies and to include fine-structure excitations in order to obtain reliable DR rate coefficients. Good agreement with experiment has been found for Fe XIX. For Mg V, Si VII, and S IX, significant discrepancies are noted between this work andmore » recommended rate coefficients.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.