Abstract
Medium-sized spiny neurons of the neostriatum, identified by intracellular injection of horseradish peroxidase, were examined at both light and electron microscopic levels. These neurons were characterized by their heavy investment of dentritic spines, beginning about 20 micron from the soma and continuing to the tips of the dendrites. Their axons arose from the soma or from a large dendritic trunk very near the soma, and tapered rapidly to form a main axonal branch from which arose several smaller initial collaterals. These arborized extensively throughout an area of about the same size as, and highly overlapping with, the dendritic field of the cell, while the main axon could be followed for distances of up to 1 mm in the direction of the globus pallidus. Three major synaptic types were seen in contact with spiny neurons. Boutons containing small round synaptic vesicles formed synapses exclusively with spiny regions of the dendrites, and most of these were axo-spinous. Small, very pleomorphic synaptic vesicles characterized a second bouton type of unknown origin, which made contacts with somata, initial segments, and dendrites, but not dendritic spines. Boutons containing large pleomorphic synaptic vesicles had the most widespread distribution, contacting all regions including dendritic spines. Spines receiving these contacts also were postsynaptic to boutons containing small round vesicles. Axon collaterals of spiny cells formed synapses with large pleomorphic vesicles and made synapses with somata, initial segments of axons, dendrites, and dendritic spines of striatal neurons, including other spiny cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.