Abstract
The present research aimed to further identify the fine structure, morphology, and thermal behaviors of a galactoglucan BHP-2 derived from Lanzhou lily bulbs through partial acid hydrolysis, methylation, 2D NMR (1H1H COSY, HSQC, and HMBC), scanning electron microscopy (SEM) and thermogravimetric-differential thermal analysis (TG-DTA). Additionally, the study assessed the potential in vitro hypoglycemic effect of BHP-2 by examining its inhibitory effect on α-glucosidase and α-amylase. The results indicated that the main backbone composition of BHP-2 consisted of →4)-α-D-Glcp-(1→, →3)-β-D-Glcp-(1 → and →6)-β-D-Galp-(1→, while the side chain composition predominantly featured →4)-α-D-Glcp-(1→, →3,5)-α-L-Araf-(1 → and →3)-β-D-Galp-(1→, attached to the C-2 and/or C-3 positions of →4)-α-D-Glcp-(1→. Terminal residues consisted of α-D-Glcp-(1 → and β-L-Araf-(1→. BHP-2 exhibited excellent thermal stability, with a microscopic surface characterized by tightly packed sheets and numerous spiral depressions, which might contribute to its remarkable in vitro hypoglycemic effect. BHP-2 showed competitive inhibition of α-amylase and mixed non-competitive inhibition of α-glucosidase, with respective IC50 values of 0.31 and 0.18 mg/mL, closely resembling to those of acarbose (0.27 and 0.12 mg/mL). These findings suggested that BHP-2 had potential as an additive for glycemic intervention.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have