Abstract
The FMR fine structure of the first-order Suhl instability in YIG spheres, previously observed by Jantz and Schneider (1975), has been re-investigated both for the conditions of coincidence and subsidiary absorption (3 and 9 GHz) from room temperature down to 1.6K. The observed fine structure consists of several series of closely spaced resonances, indicating a critical wave vectork≠0 even for half the pumping frequency lower than the 45° spin-wave branch, which is in contrast to the prediction of Suhl's theory. The spacing of these resonances was analyzed in terms of spherical modes. We were able to determine the indices and the effective wave numbers (≈105 cm−1) of the critical modes. The very different dynamic behaviour observed at room temperature and at 1.6K can be attributed to a competition of different damping mechanisms—mainly surface pit scattering and three-magnon confluence processes — and their dependences on field, frequency, and temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.