Abstract

Water table fluctuation in arid land regions may alter tree fine-root growth and mortality, thereby affecting leaf growth. To reveal the effects of water table fluctuation on fine-root growth and mortality and their relation to leaf growth, we exposed P. alba L. cuttings to various fluctuating water table depths. 1-year-old rooted cuttings were grown individually in pots containing sandy soil in a greenhouse in three water table depth treatments for 45 days: constant depth at 45 cm from the soil surface, fluctuating depths between 45 and 30 cm, and fluctuating depths between 45 and 15 cm. Fine-root biomass and mortality, biomass partitioning among plant parts, and whole-tree growth responses were determined in cuttings harvested every 15 days. Fluctuation of water tables increased the mortality of fine roots at the layers near the soil surface. Fine-root mortality increased during the shallower water table depth period. At the whole-root system level, although fine-root mortality increased when the water table was shallower, fine-root biomass was similar among the treatments, suggesting that P. alba cuttings would sustains its standing fine-root biomass under fluctuating water table depth conditions. Our structural equation modeling showed the fine-root proportion affects leaf morphological changes, suggesting that there would be a parallel relationship of morphological changes between roots and leaves with fluctuating water tables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call