Abstract
Chinese rural domestic waste has increased considerably with the modernization of agriculture and urbanization. Pyrolysis gasification is a common high-temperature waste treatment method. However, this method is usually accompanied by a large amount of particle emission. In this study, a rural domestic waste pyrolysis gasification station in Gansu Province, Northwest China, was selected for research. The particle emission characteristics of this station were analyzed, and the results showed that the original particle removal technologies were inefficient in fine particles. Hence, a new method of fine particle treatment, i.e., Cloud-Air-Purifying (CAP) technology, was explored herein. In CAP, fine particles grow in size via heterogeneous condensation in a supersaturated water vapor environment and are then collected efficiently using a supergravity field. A laboratory-scale pyrolysis gasifier and CAP equipment were built. Moreover, the CAP removal efficiency for particles generated from four typical rural domestic waste categories was studied. The results showed that CAP technology considerably increased the efficiency of fine particle removal. However, the removal efficiency for particles released owing to the incineration of wood was only ∼75%. This was because the tar substances formed during wood pyrolysis were attached to the surface of escaping particles, which led to a decrease in their hydrophilicity and particle condensation growth. To address this issue, the improvement in particle hydrophilicity using different surfactants was studied via molecular dynamic simulations. When the increase in water molecule adsorption, surface polarity, and the solid–liquid interaction energy for different surfactants were compared, alkylphenol ethoxylate (OP10) proved to be the most effective surfactant. Finally, the improved CAP technology combined with OP10 was applied to the on-site pyrolysis gasification flue gas treatment. Long term monitoring of the proposed technology revealed that particle removal efficiency remained >94%, exhibiting excellent fine particle removal. The successful application of the proposed technology demonstrates its potential for further application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have