Abstract

Aquatic particles and organic carbon (OC) regulate the occurrence and transport of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) in water-suspended particle-sediment interfaces. Conventional studies on the mechanisms regulating the relationships between PAHs and total particles/OC have ignored micro-scale regulatory factors such as particle size and OC composition. Field research in the eutrophic shallow Lake Taihu, China, revealed that the fine particle fractions 2.7–10 μm in diameter had stronger PAH adsorption capacity and significantly regulated PAH particle size distribution and water-particle partitioning. Selective PAH biodegradation by planktonic microorganisms probably significantly weakened the capacity of the coarse fractions to regulate PAHs. OC fragments at different temperature gradients had markedly different influences on the particle size distribution of PAHs. High-temperature pyrogenic OC fractions (part of black carbon) were the principal OC regulatory factors for medium-to high-molecular-weight PAHs. However, the OC fragments did not directly affect the particle distribution of low-molecular-weight PAHs. During particle deposition and burial, microbial PAH utilization and efficiency probably regulated the burial potential of various hydrophobic PAH species. Biodegradation of relatively less hydrophobic PAHs with octanol-water partition coefficients (log Kow) < 5.8 showed an increasing trend with decreasing PAH hydrophobicity. Biological pump action of the relatively higher hydrophobic PAH species (log Kow > 5.8) showed a decreasing trend with increasing PAH hydrophobicity. The discoveries of the present work further clarified the mechanisms of PAH partitioning and burial in a eutrophic shallow lake and collectively provides a valuable reference for modeling the transport and dispersal mechanisms of hydrophobic, particle-bound organic contaminants in other aquatic ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call