Abstract
Particle pH is a critical but poorly constrained quantity that affects many aerosol processes and properties, including aerosol composition, concentrations, and toxicity. We assess PM1 pH as a function of geographical location and altitude, focusing on the northeastern US, based on aircraft measurements from the Wintertime Investigation of Transport, Emissions, and Reactivity (WINTER) campaign (01 Feb to 15 Mar 2015). Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to observed partitioning of inorganic nitrate between the gas and particle phases. Good agreement was found for relative humidity (RH) above 40%; at lower RH observed particle nitrate was higher than predicted, possibly due to organic-inorganic phase separations or nitrate measurement uncertainties associated with low concentrations (nitrate < 1 µgm-3). Including refractory ions in the pH calculations did not improve model predictions, suggesting they were externally mixed with PM1 sulfate, nitrate, and ammonium. Sample line volatilization artifacts were found to be minimal. Overall, particle pH for altitudes up to 5000 m ranged between -0.51 and 1.9 (10th and 90th percentiles) with a study mean of 0.77 ± 0.96, similar to those reported for the southeastern US and eastern Mediterranean. This expansive aircraft data set is used to investigate causes in variability in pH and pH-dependent aerosol components, such as PM1 nitrate, over a wide range of temperatures (-21 to 19 °C), RH (20 to 95%), inorganic gas and particle concentrations and also provides further evidence that particles with low pH are ubiquitous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.