Abstract

Atmospheric chemical transport models (CTMs) have often serious difficulties reproducing the observed aerosol nitrate levels. We hypothesize that one of the reasons for these errors is their treatment of the competition between the accumulation and coarse-mode particles for the condensing nitric acid. The hybrid mass transfer method is used in the CTM PMCAMx to test this hypothesis. The simulation approach combines the dynamic calculation of mass transfer to coarse-mode particles while maintaining computational efficiency by assuming that the fine mode particles are in equilibrium. The resulting model is applied to Europe and evaluated for the period of May 2008 against ground-based and airborne Aerosol Mass Spectrometer measurements from the EUCAARI campaign.PMCAMx using the default equilibrium approach to calculate the partitioning of semi-volatile PM components between the gas and particle phases seriously overpredicts PM1 nitrate levels especially for locations in which there were relatively high coarse-mode particle concentrations (significant sea-salt or dust concentrations). This shortcoming was especially apparent for the Mace Head site in Ireland, where a large amount of nitrate was associated with sea-salt. The improved simulation of the coarse-mode particle chemistry results in significant improvement of the predictions of PM1 nitrate and ammonium. Sea-salt emissions in areas with high nitric acid levels reduce the PM1 nitrate concentrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.