Abstract
Plant height (PH) and ear height (EH) are two important traits in maize (Zea mays L.), as they are closely related to lodging resistance and planting density. Our objectives were to (1) investigate single-nucleotide polymorphisms (SNPs) that are associated with PH and EH for detecting quantitative trait loci (QTL) and new gene that determines PH and EH, (2) explore the value of the QTL in maize breeding, and (3) investigate whether the “triangle heterotic group” theory is applicable for lowering PH and EH to increase yield. Seven inbred female parents were crossed with a common founder male parent Ye 107 to create a nested association mapping (NAM) population. The analysis of phenotypic data on PH and EH revealed wide variation among the parents of the NAM population. Genome-wide association study (GWAS) and high-resolution linkage mapping were conducted using the NAM population, which generated 264,694 SNPs by genotyping-by-sequencing. A total of 105 SNPs and 22 QTL were identified by GWAS and found to be significantly associated with PH and EH. A high-confidence QTL for PH, Qtl-chr1-EP, was identified on chromosome 1 via GWAS and confirmed by linkage analysis in two recombinant inbred line (RIL) populations. Results revealed that the SNP variation in the promoter region of the candidate gene Zm00001d031938, located at Qtl-chr1-EP, which encoded UDP-N-acetylglucosamine-peptide N-acetyl-glucosaminyl-transferase, might decrease PH and EH. Furthermore, the triangle heterotic pattern adopted in maize breeding programs by our team is practicable in selecting high-yield crosses based on the low ratio of EH/PH (EP).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have