Abstract
We develop a theory of regular aperiodic ω-languages in parallel with the theory around the Wagner hierarchy. In particular, we characterize the Wadge degrees of regular aperiodic ω-languages, find an effective version of the Wadge reducibility adequate for this class of languages and prove "aperiodic analogs" of the Büchi-Landweber determinacy theorem and of the Landweber's characterization of regular open and regular Gδ sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Foundations of Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.