Abstract

In the study of topological properties of digital images, which is the central topic of digital topology, one is often interested in special operations on object boundaries and their properties. Examples are contour filling or border following. In classical topology there exists the strong concept of regularity: regular sets in R2 show no “exotic behaviour” and are extensively used in the theory of boundary value problems. In this paper we transfer the concept of regularity to digital topology within the framework of semi-topology. It is shown that regular open sets in (a special) semi-topology can be characterized graphically. A relationship between digital topology and image processing is established by showing that regular open digital sets, interpreted as digital pictures, are left unchanged when the cross-median filter is applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.