Abstract

Given a set of agents qualifying or disqualifying each other, group identification is the task of identifying a socially qualified subgroup of agents. Social qualification depends on the specific rule used to aggregate individual qualifications . The classical bribery problem in this context asks how many agents need to change their qualifications in order to change the outcome in a certain way. Complementing previous results showing polynomial-time solvability or NP-hardness of bribery for various social rules in the constructive (aiming at making specific agents socially qualified) or destructive (aiming at making specific agents socially disqualified) setting, we provide a comprehensive picture of the parameterized computational complexity landscape. Conceptually, we also consider a more fine-grained concept of bribery cost, where we ask how many single qualifications need to be changed, nonunit prices for different bribery actions, and a more general bribery goal that combines the constructive and destructive setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.