Abstract
ABSTRACTFine-grained prediction of urban population is of great practical significance in many domains that require temporally and spatially detailed population information. However, fine-grained population modeling has been challenging because the urban population is highly dynamic and its mobility pattern is complex in space and time. In this study, we propose a method to predict the population at a large spatiotemporal scale in a city. This method models the temporal dependency of population by estimating the future inflow population with the current inflow pattern and models the spatial correlation of population using an artificial neural network. With a large dataset of mobile phone locations, the model’s prediction error is low and only increases gradually as the temporal prediction granularity increases, and this model is adaptive to sudden changes in population caused by special events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.