Abstract
Let f : T ! T be a C2 volume preserving partially hyperbolic diffeomorphism homotopic to a linear Anosov automorphism A : T ! T. We prove that if f is Kolmogorov, then f is Bernoulli. We study the characteristics of atomic disintegration of the volume measure whenever it occurs. We prove that if the volume measure m has atomic disintegration on the center leaves then the disintegration has one atom per center leaf. We give a condition, depending only on the center Lyapunov exponent of the diffeomorphism, that guarantees atomic disintegration of the volume measure on center leaves. We construct an open family of diffeomorphisms satisfying this condition which generates the first examples of foliations which are both measurable and minimal. In this same construction we give the first examples of partially hyperbolic diffeomorphisms with zero center Lyapunov exponent and homotopic to a linear Anosov.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have