Abstract

Universal source coding at short blocklengths is considered for an i.i.d. exponential family of distributions. The Type Size code has previously been shown to be optimal up to the third-order rate for universal compression of all memoryless sources over finite alphabets. The Type Size code assigns sequences ordered based on their type class sizes to binary strings ordered lexicographically. To generalize this type class approach for parametric sources, a natural scheme is to define two sequences to be in the same type class if and only if they are equiprobable under any model in the parametric class. This natural approach, however, is shown to be suboptimal. A variation of the Type Size code is introduced, where type classes are defined based on neighborhoods of minimal sufficient statistics. The asymptotics of the overflow rate of this variation are derived and a converse result establishes its optimality up to the third-order term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.