Abstract
The raw data generated by simulation codes on supercomputers can be so large that it requires data reduction methods to allow scientists to understand it. Physics-based reductions are often used, for example, taking moments of particle distribution functions. It must be realized, however, that there will be a loss of information in these reductions. Here, we explore the use of unsupervised machine learning algorithms to see if patterns and structure can be learned and discovered directly in the data itself, before any reductions, and to give researchers further insights into areas of interest. This has the potential benefit of discovering kinetic structure that would be lost by some physics-based reductions. We utilize the 5-D, gyrokinetic distribution function in simulations from the full- $f$ code X-point Gyrokinetic Code (XGC1). We find that in spatial regions of “blobby” turbulence in the edge, the electron distribution function has a very distinct signature, with higher energy regions varying across space separately from the lower energy component and higher energy regions showing a distinction near passed/trapped boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.