Abstract

This paper introduces a method for computing points satisfying the second-order necessary optimality conditions for nonconvex minimization problems subject to a closed and convex constraint set. The method comprises two independent steps corresponding to the first- and second-order conditions. The first-order step is a generic closed map algorithm, which can be chosen from a variety of first-order algorithms, making it adjustable to the given problem. The second-order step can be viewed as a second-order feasible direction step for nonconvex minimization subject to a convex set. We prove that any limit point of the resulting scheme satisfies the second-order necessary optimality condition, and establish the scheme’s convergence rate and complexity, under standard and mild assumptions. Numerical tests illustrate the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.