Abstract

We have analyzed the {\it XMM-Newton} and {\it Chandra} data overlapping $\sim$16.5 deg$^2$ of Sloan Digital Sky Survey Stripe 82, including $\sim$4.6 deg$^2$ of proprietary {\it XMM-Newton} data that we present here. In total, 3362 unique X-ray sources are detected at high significance. We derive the {\it XMM-Newton} number counts and compare them with our previously reported {\it Chandra} Log$N$-Log$S$ relations and other X-ray surveys. The Stripe 82 X-ray source lists have been matched to multi-wavelength catalogs using a maximum likelihood estimator algorithm. We discovered the highest redshift ($z=5.86$) quasar yet identified in an X-ray survey. We find 2.5 times more high luminosity (L$_x \geq 10^{45}$ erg s$^{-1}$) AGN than the smaller area {\it Chandra} and {\it XMM-Newton} survey of COSMOS and 1.3 times as many identified by XBo\"otes. Comparing the high luminosity AGN we have identified with those predicted by population synthesis models, our results suggest that this AGN population is a more important component of cosmic black hole growth than previously appreciated. Approximately a third of the X-ray sources not detected in the optical are identified in the infrared, making them candidates for the elusive population of obscured high luminosity AGN in the early universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.