Abstract

We investigate the star-forming properties of 1620 X-ray selected AGN host galaxies as a function of their specific X-ray luminosity (i.e., X-ray luminosity per unit host stellar mass) -- a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star-formation at high Eddington ratios, which may hint toward "AGN feedback" effects. Star-formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning $0.01 \lesssim L_{\rm X}/M_{\ast} \lesssim 100~L_{\odot} ~M_{\odot}^{-1}$). After normalising for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e., 8-10 per cent vs. 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star-formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.