Abstract
Frequently, affine recurrence equations can be scheduled more efficiently by quadratic scheduling functions than by linear scheduling functions. In this paper, the problem of finding optimal quadratic schedules for affine recurrence equations is formulated as a convex nonsmooth programming problem. In particular, sufficient constraints for causality are used generalizing Lamport's condition. In this way, the presented problem formulation becomes independent of the problem size. The research tool AQUAD is described implementing this problem formulation. Several nontrivial examples demonstrate that AQUAD can be effectively used to calculate quadratic schedules for affine recurrence equations. Finally, it is shown how array processors can be synthesized from affine recurrence equations which are scheduled by quadratic functions with a singular Hessian matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.