Abstract
Both recent evidence and research-based early mathematics curricula indicate that repeating patterns—predictable sequences that follow a rule—are a topic of major importance for mathematics development. The purpose of the current study was to help build a theory for how early repeating patterning knowledge contributes to early math development, focusing on development in children aged 4–6 years. The current study examined the relation between 65 preschool children’s repeating patterning knowledge (via a fast, teacher-friendly measure) and their end-of-kindergarten broad math and numeracy knowledge, controlling for verbal and visual-spatial working memory (WM) skills as well as end-of-pre-K (pre-kindergarten) broad math knowledge. Relations were also examined between repeating patterning and specific aspects of numeracy knowledge—knowledge of the count sequence to 100 and the successor principle. Children’s repeating patterning knowledge was significantly predictive of their broad math and general numeracy knowledge, as well as one specific aspect of their numeracy knowledge (counting to 100), even after controlling for verbal and visual-spatial WM skills. Further, repeating patterning knowledge remained a unique predictor of general numeracy knowledge and counting to 100 after controlling for end-of-pre-K broad math knowledge. The relation between repeating patterning and mathematics may be explained by the central role that identifying predictable sequences based on underlying rules plays in both. Theories of math development and early math instruction standards should thus give even greater attention to the role of children’s repeating patterning knowledge.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have