Abstract

In recent years, both multilayer perceptrons and networks of spiking neurons have been used in applications ranging from detailed models of specific cortical areas to image processing. A more challenging application is to find solutions to functional equations in order to gain insights to underlying phenomena. Finding the roots of real valued monotonically increasing function mappings is the solution to a particular class of functional equation. Furthermore, spiking neural network approaches in solving problems described by functional equations, may be an useful tool to provide important insights to how different regions of the brain may co-ordinate signaling within and between modalities, thus providing a possible basis to construct a theory of brain function. In this letter, we present for the first time a spiking neural network architecture based on integrate-and-fire units and delays, that is capable of calculating the functional or iterative root of nonlinear functions, by solving a particular class of functional equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.