Abstract

With the popularization of social network analysis, information diffusion models have a wide range of applications, such as viral marketing, publishing predictions, and social recommendations. The emergence of multiplex social networks has greatly enriched our daily life; meanwhile, identifying influential edges remains a significant challenge. The key problem lies that the edges of the same nodes are heterogeneous at different layers of the network. To solve this problem, we first develop a general information diffusion model based on the adjacency tensor for the multiplex network and show that the n-mode singular value can control the level of information diffusion. Then, to explain the suppression of information diffusion through edge deletion, efficient edge eigenvector centrality is proposed to identify the influence of heterogeneous edges. The numerical results from synthetic networks and real-world multiplex networks show that the proposed strategy outperforms some existing edge centrality measures. We devise an experimental strategy to demonstrate that influential heterogeneous edges can be successfully identified by considering the network layer centrality, and the deletion of top edges can significantly reduce the diffusion range of information across multiplex networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.