Abstract

We reduce a case of the hidden subgroup problem (HSP) in $\SL$, $\PSL$, and $\PGL$, three related families of finite groups of Lie type, to efficiently solvable HSPs in the affine group $\AGL$. These groups act on projective space in an ``almost'' 3-transitive way, and we use this fact in each group to distinguish conjugates of its Borel (upper triangular) subgroup, which is also the stabilizer subgroup of an element of projective space. Our observation is mainly group-theoretic, and as such breaks little new ground in quantum algorithms. Nonetheless, these appear to be the first positive results on the HSP in finite simple groups such as $\PSL$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.