Abstract

We investigate effective properties of uncountable free abelian groups. We show that identifying free abelian groups and constructing bases for such groups is often computationally hard, depending on the cardinality. For example, we show, under the assumption $V=L$, that there is a first-order definable free abelian group with no first-order definable basis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.