Abstract

This study introduces a novel perspective on financial fraud detection by exploring the utility of managers' abnormal tone. To mitigate bias in indicator selection, we implement a feature selection process involving a comprehensive set of 301 indicators, including financial, non-financial, and textual, and various machine learning algorithms. The dataset contains 6077 pairs of fraudulent and non-fraudulent samples in China. Our findings underscore the significance of abnormal tone in fraud detection, establishing it as a prominent factor in the feature selection process. The accuracy outcomes from eight machine learning models further confirm that incorporating abnormal tone can enhance fraud detection performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.