Abstract
Abstract This article first uses a new method of nonlinear combination forecasting based on neural networks to construct a financial crisis early warning model and conduct an empirical study. The drafting article uses Fisher’s second-class linear discriminant analysis and binary logistic regression to establish a three-year early warning model for listed companies before the financial crisis. Empirical research shows that this early warning model applies to various industries. It can play a certain role in predicting and preventing the financial crisis of Chinese companies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.