Abstract

From July to September 1982 feeding experiments were conducted with 138-mm fork length Atlantic menhaden Brevoortia tyrannus (Latrobe) (Pisces: Clupeidae) to determine their particle size-specific feeding abilities. Monoculture clearing-rate experiments showed that the minimum size of particles filtered, the minimum size threshold, for 138-mm fish is 7 to 9 μm. Filtration efficiency for three species of phytoplankton below the minimum size threshold. Pseudoisochrysis paradoxa, Monochrysis lutheri, and Isochrysis galbana, averaged 1.0% (n=14). Tetraselmis suecica, Prorocentrum minimum, and 2-celled Skeleionema costatum, phytoplankton which are larger than the minimum size threshold and smaller than the 20-μm upper limit for nanoplankton, were filtered at efficiencies averaging 21% (n=24). S. costatum chains of 3 to 6 cells, prey particles exceeding the size limits of nanoplankton, were filtered at average efficiencies ranging from 22 to 84%. The mean filtration efficiency for Artemia sp. nauplii (San Francisco Bay Brand) of 36% (n=7) was lower than for smaller phytoplankton prey. The presence of detritus at concentrations usually encountered in nature enhanced filtering efficiency and lowered minimum size thresholds at which phytoplankton were retained. For small food particles, filtering efficiency decreased as swimming speed of the menhaden increased. As menhaden grow, their feeding tepertoire shifts to larger planktonic organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call