Abstract

Diffusion-weighted imaging (DWI) is a powerful tool for investigating spinal cord injury (SCI), but has limited specificity for axonal damage, which is the most predictive feature of long-term functional outcome. In this study, a technique designed to detect acute axonal injury, filter-probe double diffusion encoding (FP-DDE), is compared with standard DWI for predicting long-term functional and cellular outcomes. This study extends FP-DDE to predict long-term functional and histological outcomes in a rat SCI model of varying severities (n = 58). Using a 9.4T magnetic resonance imaging (MRI) system, a whole-cord FP-DDE spectroscopic voxel was acquired in 3 minutes at the lesion site and compared to DWI at 48 hours postinjury. Relationships with chronic (30-day) locomotor and histological outcomes were evaluated with linear regression. The FP-DDE measure of parallel diffusivity (ADC|| ) was significantly related to chronic hind limb locomotor functional outcome (R2 = 0.63, p < 0.0001), and combining this measurement with acute functional scores demonstrated prognostic benefit versus functional testing alone (p = 0.0007). Acute ADC|| measurements were also more closely related to the number of injured axons measured 30 days after the injury than standard DWI. Furthermore, acute FP-DDE images showed a clear and easily interpretable pattern of injury that closely corresponded with chronic MRI and histology observations. Collectively, these results demonstrate FP-DDE benefits from greater specificity for acute axonal damage in predicting functional and histological outcomes with rapid acquisition and fully automated analysis, improving over standard DWI. FP-DDE is a promising technique compatible with clinical settings, with potential research and clinical applications for evaluation of spinal cord pathology. Ann Neurol 2018;83:37-50.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call