Abstract
The authors previously demonstrated that Cerebrolysin is effective for treatment of mild closed head injury (CHI) when administered 4 hours after injury. The aim of this study was to determine Cerebrolysin's effects on functional and histological outcomes in rats subjected to moderate CHI. In this randomized, blinded, and vehicle-controlled preclinical trial, male adult Wistar rats subjected to moderate CHI received either Cerebrolysin treatment at a dose of 2.5 ml/kg (n = 13) or vehicle (saline, n = 13) intraperitoneally administered daily for 10 days, starting at 4 hours after injury. Animals were subjected to cognitive and sensorimotor functional tests at multiple time points, and they were killed 3 months after injury. The brains were processed for analyses of neuronal cell loss, amyloid precursor protein, axonal damage, and neurogenesis. Compared with rats treated with vehicle (saline), rats treated with Cerebrolysin had significantly increased numbers of neuroblasts and newborn mature neurons in the dentate gyrus (DG) and attenuated amyloid precursor protein accumulation and axonal damage in various brain regions, as well as decreased neuronal loss in the DG and cornu ammonis 3 (CA3) region of the hippocampus (p < 0.05). Global testing using generalized estimating equations showed a significant beneficial effect of Cerebrolysin treatment on sensorimotor functional outcomes from 1 day to 3 months after injury compared to that of saline treatment (p < 0.05). Compared with vehicle-treated rats, Cerebrolysin-treated rats showed significantly and robustly improved long-term (up to 3 months) cognitive functional recovery, as measured by social interaction, Morris water maze, novel object recognition, and odor recognition tests. In the Cerebrolysin-treated rats there were significant correlations between multiple histological outcomes and functional recovery evident 3 months after moderate CHI, as indicated by Pearson partial correlation analyses. The authors' findings demonstrate that Cerebrolysin treatment significantly improves long-term functional and histological outcomes in rats with moderate CHI, with functional outcomes significantly correlated with histological indices of neuroplasticity and neuroprotection. These data indicate that Cerebrolysin may be useful for the treatment of moderate CHI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.