Abstract

The impact of control sequences on the environmental coupling of a quantum system can be described in terms of a filter. Here we analyze how the coherent evolution of two interacting spins subject to periodic control pulses, at the example of a nitrogen vacancy center coupled to a nuclear spin, can be described in the filter framework in both the weak and the strong coupling limit. A universal functional dependence around the filter resonances then allows for tuning the coupling type and strength. Originally limited to small rotation angles, we show how the validity range of the filter description can be extended to the long time limit by time-sliced evolution sequences. Based on that insight, the construction of tunable, noise decoupled, conditional gates composed of alternating pulse sequences is proposed. In particular such an approach can lead to a significant improvement in fidelity as compared to a strictly periodic control sequence. Moreover we analyze the decoherence impact, the relation to the filter for classical noise known from dynamical decoupling sequences, and we outline how an alternating sequence can improve spin sensing protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.