Abstract
This paper presents a numerical study of the effects of inlet supply starvation on film thickness in EHL point contacts. Generally this problem is treated using the position of the inlet meniscus as the governing parameter; however, it is difficult to measure this in real applications. Thus, in this paper an alternative approach is adopted whereby the amount of oil present on the surfaces is used to define the degree of starvation. It is this property which determines both meniscus position and film thickness reduction. The effect of subsequent overrollings on film thickness decay can also be evaluated. In the simplest case a constant lubricant inlet film thickness in the Y direction is assumed and the film thickness distribution is computed as a function of the oil available. This yields an equation predicting the film thickness reduction, with respect to the fully flooded value, from the amount of lubricant initially available on the surface, as a function of the number of overrollings n. However, the constant inlet film thickness does not give a realistic description of starvation for all conditions. Some experimental studies show that the combination of side flow and replenishment action can generate large differences in local oil supply and that the side reservoirs play an important role in this replenishment mechanism. Thus the contact centre can be fully starved whilst the contact sides remain well lubricated. In these cases, a complete analysis with a realistic inlet distribution has been carried out and the numerical results agree well with experimental findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.