Abstract

A film percolation model is proposed for composite electrodes of solid oxide fuel cells (SOFCs). The model is developed to predict the percolation properties of 2D-infinite structures which represent the structural characteristics of composite electrodes of electrochemical devices such as SOFCs. The model can be used to estimate electrode properties, such as percolation probability, active three-phase boundary length and interfacial polarization resistance. Compared with the classic percolation theory, which is particularly applicable to 3D-infinite bulks, the model can explicitly capture the effects of thinly layered nature of composite electrodes, and describes a cross-over between 2D-infinite films and 3D-infinite bulks. It also permits the prediction within whole electrode composition range, and can be easily applied in SOFC modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call