Abstract

New predictive methods for R-134a condensing on vertical arrays of horizontal tubes are proposed based on visual observations revealing that condensate is slung off the array of tubes sideways and significantly affects condensate inundation and thus the heat transfer process. For two types of three-dimensional (3D) enhanced tubes, the Turbo-CSL and the Gewa-C, the local heat flux is correlated as a function of condensation temperature difference, the film Reynolds number, the tube spacing, and liquid slinging effect. The measured heat transfer data of the plain tube were well described by an existing asymptotic model based on heat transfer coefficients for the laminar wavy flow and turbulent flow regimes or, alternatively, by a new model proposed here based on liquid slinging. For the 26fpi low finned tube, the effect of inundation was found to be negligible and single-tube methods were found to be adequate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call