Abstract

The aim of the present investigation was to study the effect of condensate inundation on the thermal performance of a vertical array of horizontal tubes with plain and enhanced surfaces. Refrigerant R-134a was condensed at a saturation temperature of 304K on tube arrays with up to ten tubes at pitches of 25.5,28.6,and44.5mm. Notably, local condensing heat transfer coefficients were measured at the midpoint of each tube, as opposed to mean values. Four commercially available copper tubes with a nominal diameter of 19.05mm(0.75in.) were tested: a plain tube, a 26fpi∕1024fpm low finned tube, and two tubes, with three-dimensional (3D) enhanced surface structures. At low liquid inundation rates, the tubes with 3D enhanced surface structures significantly outperformed the low finned tube. Increasing liquid inundation deteriorated the thermal performance of the 3D enhanced tubes, whereas it had nearly no affect on the low finned tube, resulting in a higher heat transfer coefficients for the low finned tube at high liquid film Reynolds numbers. All the tests were performed with minimal vapor shear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.