Abstract

Facile filling of multiwalled carbon nanotubes (MWCNTs) with Prussian blue nanoparticles (PBNPs) of high peroxidase-like catalytic activity was performed to develop novel colorimetric sensing protocols for assaying H2O2 and glucose. Fine control of PBNP growth was achieved by modulating the concentration ratio of K3 [Fe(CN)6] and FeSO4 precursors in an acidic solution containing ultrasonically dispersed MWCNTs, and thus size-matched PBNPs could be robustly immobilized in the cavities of the MWCNTs (MWCNT-PBin). Unlike other reported methods involving complicated procedures and rigorous preparation/separation conditions, this mild one-pot filling method has advantages of easy isolation of final products by centrifugation, good retention of the pristine outer surface of the MWCNT shell, and satisfactory filling yield of (24±2) %. In particular, encapsulation of PBNPs of poor dispersibility and limited functionality in dispersible and multifunctional MWCNT shells creates new and valuable opportunities for quasihomogeneous-phase applications of PB in liquid solutions. The MWCNT-PBin nanocomposites were exploited as a peroxidase mimic for the colorimetric assay of H2O2 in solution by using 3,3',5,5'-tetramethylbenzidine (TMB) as reporter, and they gave a linear absorbance response from 1 μM to 1.5 mM with a limit of detection (LOD) of 100 nM. Moreover, glucose oxidase (GOx) was anchored on the outer surface of MWCNT-PBin to form GOx/MWCNT-PBin bionanocomposites. The cooperation of outer-surface biocatalysis with peroxidase-like catalysis of interior PB resulted in a novel cooperative colorimetric biosensing mode for glucose assay. The use of GOx/MWCNT-PBin for colorimetric biosensing of glucose gave a linear absorbance response from 1 μM to 1.0 mM and an LOD of 200 nM. The presented protocols may be extended to other multifunctional nanocomposite systems for broad applications in catalysis and biotechnology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.