Abstract

The increase of thermo-physical properties of masonry made of ceramic burnt products is possible through the use of heat-efficient ceramics and, in particular, porous building tiles. The use of combustible additives or foaming technology is related to increased energy costs and difficulties in obtaining products with uniformly distributed porosity.The analysis of the state of the technology of ceramic materials made it possible to formulate a research hypothesis according to which the use of a porous non-combustible additive in the composition of ceramic masses, on the one hand, will make it possible to obtain materials with a lower density compared to traditional ceramic products, and, on the other hand, will allow the use of hard mixtures with reduced water content, and therefore significantly save the cost of drying products, while increasing the uniformity of the porous ceramic crock.The purpose of the research was to develop recipes for ceramic porous products and to develop modes of their burning. The use of crushed foam glass as a lightweight non-burning and exhausting additive, on the one hand, made it possible to use tough ceramic mixtures (with a water content not exceeding 18%), and, on the other hand, to use more rigid and shorter drying modes, which also reduced the energy and material consumption of the technology.The most energy-intensive burning process was optimized by the methods of mathematical planning and processing of experimental results. The average density of crushed foam glass (140–150 kg/m3), optimal for the burnt product, was established, and also, as a result of analytical optimization and interpretation of the experimental results, dependencies that allow choosing parameters and evaluating product properties depending on foam glass consumption and burning temperature were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.